Author:
Wobus Cameron,Porter Jeremy,Lorie Mark,Martinich Jeremy,Bash Rachel
Abstract
Abstract
Riverine floods are among the most costly natural disasters in the United States, and floods are generally projected to increase in frequency and magnitude with climate change. Faced with these increasing risks, improved information is needed to direct limited resources toward the most cost-effective adaptation actions available. Here we leverage a newly available flood risk dataset for residential properties in the conterminous United States to calculate expected annual damages to residential structures from inland/riverine flooding at a property-level; the cost of property-level adaptations to protect against future flood risk; and the benefits of those adaptation investments assuming both static and changing climate conditions. Our modeling projects that in the absence of adaptation, nationwide damages from riverine flooding will increase by 20%–30% under high levels of warming. Floodproofing, elevation and property acquisition can each be cost-effective adaptations in certain situations, depending on the desired return on investment (i.e. benefit cost ratio), the discount rate, and the assumed rate of climate change. Incorporation of climate change into the benefit-cost calculation increases the number of properties meeting any specified benefit-cost threshold, as today’s investments protect against an increasing frequency of future floods. However, because future expected damages are discounted relative to present-day, the adaptation decisions made based on a static climate assumption are very similar to the decisions made when climate change is considered. If the goal is to optimize adaptation decision making, a focus on quantifying present-day flood risk is therefore at least as important as understanding how those risks might change under a warming climate.
Funder
U.S. Environmental Protection Agency
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献