National‐Scale Flood Hazard Data Unfit for Urban Risk Management

Author:

Schubert Jochen E.1ORCID,Mach Katharine J.23ORCID,Sanders Brett F.14ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of California, Irvine Irvine CA USA

2. Department of Environmental Science and Policy Rosenstiel School of Marine, Atmospheric, and Earth Science University of Miami Miami FL USA

3. Leonard and Jayne Abess Center for Ecosystem Science and Policy University of Miami Coral Gables FL USA

4. Department of Urban Planning and Public Policy University of California, Irvine Irvine CA USA

Abstract

AbstractExtreme flooding events are becoming more frequent and costly, and impacts have been concentrated in cities where exposure and vulnerability are both heightened. To manage risks, governments, the private sector, and households now rely on flood hazard data from national‐scale models that lack accuracy in urban areas due to unresolved drainage processes and infrastructure. Here we assess the uncertainties of First Street Foundation (FSF) flood hazard data, available across the U.S., using a new model (PRIMo‐Drain) that resolves drainage infrastructure and fine resolution drainage dynamics. Using the case of Los Angeles, California, we find that FSF and PRIMo‐Drain estimates of population and property value exposed to 1%‐ and 5%‐annual‐chance hazards diverge at finer scales of governance, for example, by 4‐ to 18‐fold at the municipal scale. FSF and PRIMo‐Drain data often predict opposite patterns of exposure inequality across social groups (e.g., Black, White, Disadvantaged). Further, at the county scale, we compute a Model Agreement Index of only 24%—a ∼1 in 4 chance of models agreeing upon which properties are at risk. Collectively, these differences point to limited capacity of FSF data to confidently assess which municipalities, social groups, and individual properties are at risk of flooding within urban areas. These results caution that national‐scale model data at present may misinform urban flood risk strategies and lead to maladaptation, underscoring the importance of refined and validated urban models.

Funder

National Centers for Coastal Ocean Science

National Science Foundation

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3