Climate drivers of the variations of vegetation productivity in India

Author:

Verma AkashORCID,Chandel VikramORCID,Ghosh SubimalORCID

Abstract

Abstract Variations in the uptake of atmospheric carbon by vegetation over India, the second-highest contributor to global greening, have enormous implications for climate change mitigation. Global studies conclude that temperature and total water storage (TWS) cause interannual variations of carbon uptake based on the correlation coefficient, which is not a causality measure. Here, we apply a statistically rigorous causality approach, Peter Clark momentary conditional independence, to the monthly observed satellite and station-based gridded dataset of India’s climate and carbon uptake variables. We find no existence of causal connections from TWS to gross primary production (GPP) or net photosynthesis (PSN). Causal relationships exist from precipitation to GPP and PSN. Since shallow-rooted croplands dominate India’s green cover, impacts of precipitation on carbon capture of the the land ecosystem are immediate and not via TWS. Our results identify the key climate drivers of GPP/PSN variability and highlight interactions between water and the carbon cycle in India. Our results also highlight the need for formal causal analysis using climate and earth sciences observations rather than the conventional practices of inferring causality from correlations.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference35 articles.

1. Association, correlation, and causation;Altman;Nat. Methods,2015

2. China and India lead in greening of the world through land-use management;Chen;Nat. Sustain.,2019

3. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts;Frank;Glob. Change Biol.,2015

4. MCD12Q1 MODIS/terra+aqua land cover type yearly L3 global 500m SIN grid V006;Friedl,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3