Examining the evolution of extreme precipitation event using reanalysis and the observed datasets along the Western Ghats

Author:

Khadke Leena1,Budakoti Sachin2,Verma Akash1,Bhowmik Moumita3ORCID,Hazra Anupam3ORCID

Affiliation:

1. Department of Civil Engineering Indian Institute of Technology Bombay Mumbai India

2. Interdisciplinary Program in Climate Studies Indian Institute of Technology Bombay Mumbai India

3. Indian Institute of Tropical Meteorology Ministry of Earth Sciences Pune India

Abstract

AbstractIn recent decades, India has witnessed an increase in the intensity, frequency, and spread of extreme weather events. The widespread increase in extreme precipitation over the Western Coast of India is a matter of great concern. The factors contributing to such devastating extreme precipitation remain unclear due to the variability present in meteorological and oceanic variables and associated large‐scale circulations. Using reanalysis and observed datasets, we attempted to identify a combination of dynamic, thermodynamic, and cloud microphysics processes contributing to the anomalous precipitation from August 1 to 10, 2019 against its climatology. Our key findings highlight the crucial role of warm sea surface temperatures (anomaly >1.4°C), outgoing longwave radiation (anomaly <−50 W·m−2), and atmospheric temperature (anomaly over the ocean is >1.6°C) in enhancing the moisture‐holding capacity of the atmosphere by almost 10%. This elevated moisture, propelled by intensified low‐level winds (anomalies exceeding 4 m·s−1), leads to a shift from ocean to land. Notably, we observe that vertical updrafts (anomalies >−0.4 m·s−1) contribute to increased atmospheric instability and moisture convergence. The presence of an ample amount of cloud hydrometeors, with anomalies surpassing 2.5 × 10−4 kg·kg−1, establishes conditions conducive to sustained intense precipitation. Our findings deepen our understanding of the complex relationships between ocean and atmospheric dynamics, and wind patterns, and emphasize their pivotal influence on regional weather patterns and land surface hydrology.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3