Streambank and floodplain geomorphic change and contribution to watershed material budgets

Author:

Noe G BORCID,Hopkins K G,Claggett P R,Schenk E R,Metes M J,Ahmed L,Doody T R,Hupp C R

Abstract

Abstract Stream geomorphic change is highly spatially variable but critical to landform evolution, human infrastructure, habitat, and watershed pollutant transport. However, measurements and process models of streambank erosion and floodplain deposition and resulting sediment fluxes are currently insufficient to predict these rates in all perennial streams over large regions. Here we measured long-term lateral streambank and vertical floodplain change and sediment fluxes using dendrogeomorphology in streams around the U.S. Mid-Atlantic, and then statistically modeled and extrapolated these rates to all 74 133 perennial, nontidal streams in the region using watershed- and reach-scale predictors. Measured long-term rates of streambank erosion and floodplain deposition were highly spatially variable across the landscape from the mountains to the coast. Random Forest regression identified that geomorphic change and resulting fluxes of sediment and nutrients, for both streambank and floodplain, were most influenced by urban and agricultural land use and the drainage area of the upstream watershed. Modeled rates for headwater streams were net erosional whereas downstream reaches were on average net depositional, leading to regional cumulative sediment loads from streambank erosion (−5.1 Tg yr−1) being nearly balanced by floodplain deposition (+5.3 Tg yr−1). Geomorphic changes in stream valleys had substantial influence on watershed sediment, phosphorus, carbon, and nitrogen budgets in comparison to existing predictions of upland erosion and delivery to streams and of downstream sediment loading. The unprecedented scale of these novel findings provides important insights into the balance of erosion and deposition in streams within disturbed landscapes and the importance of geomorphic change to stream water quality and carbon sequestration, and provides vital understanding for targeting management actions to restore watersheds.

Funder

U.S. Geological Survey

Smithsonian Conservation Biology Institute

William Penn Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3