An integrated assessment of the global virtual water trade network of energy

Author:

Peer Rebecca A MORCID,Chini Christopher MORCID

Abstract

Abstract The global trade of energy allows for the distribution of the world’s collective energy resources and, therefore, an increase in energy access. However, this network of trade also generates a network of virtually traded resources that have been used to produce energy commodities. An integrated database of energy trade water footprints is necessary to capture interrelated energy and water concerns of a globalized economy,and is also motivated by current climate and population trends. Here, we quantify and present the virtual water embedded in energy trade across the globe from 2012 to 2018, building on previous water footprinting and energy virtual water trade studies to create an integrated database. We use data from the United Nations Comtrade database and combine several literature estimates of water consumption of energy commodities to generate the global virtual water trade network. Results include a comprehensive database of virtual water trade for energy at the country level, greatly expanding the literature availability on virtual water trade. The total volume of virtual water trade increased 35% from 157 km3 in 2012 to 211 km3 in 2018. The global trade of oil and fuelwood are consistent drivers of virtual water trade over time, whereas coal, hydrocarbons, and charcoal collectively contribute less than 4% of total virtual water trade between 2012 and 2018. Electricity, despite a less dense trade network constrained by infrastructure, contributes notably to virtual water trade, driven largely by water use for hydroelectricity. This study develops an integrated assessment of previous virtual water studies to estimate global virtual water trade of energy, creating a platform for future global studies.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3