Cocoa plant productivity in West Africa under climate change: a modelling and experimental study

Author:

Black EmilyORCID,Pinnington EwanORCID,Wainwright CarolineORCID,Lahive FionaORCID,Quaife TristanORCID,Allan Richard PORCID,Cook Peter,Daymond AndrewORCID,Hadley Paul,McGuire Patrick CORCID,Verhoef AnneORCID,Vidale Pier LuigiORCID

Abstract

Abstract The potential effect of climate change on regional suitability for cocoa cultivation is a serious economic concern for West Africa—especially for Ghana and Côte d’Ivoire, whose cocoa cultivation accounts for respectively ∼19% and ∼45% of world production. Here, we present a modelling and observational study of cocoa net primary productivity (NPP) in present day and future West African climates. Our analysis uses a data assimilation technique to parameterise a process-based land-surface model. The parameterisation is based on laboratory observations of cocoa, grown under both ambient and elevated CO2. Present day and end of 21st century cocoa cultivation scenarios are produced by driving the parameterised land-surface model with output from a high-resolution climate model. This represents a significant advance on previous work, because unlike the CMIP5 models, the high-resolution model used in this study accurately captures the observed precipitation seasonality in the cocoa-growing regions of West Africa—a key sensitivity for perennials like cocoa. We find that temperature is projected to increase significantly and precipitation is projected to increase slightly, although not in all parts of the region of interest. We find, furthermore, that the physiological effect of higher atmospheric CO2 concentration ameliorates the impacts of high temperature and variation in precipitation thereby reducing some of the negative impacts of climate change and maintaining NPP in West Africa, for the whole 21st Century, even under a high emissions scenario. Although NPP is an indicator of general vegetation condition, it is not equivalent to yield or bean quality. The study presented here is, nevertheless, a strong basis for further field and modelling studies of cultivation under elevated CO2 conditions.

Funder

Global Challenges Research Fund

Seventh Framework Programme

Horizon 2020 Framework Programme

Mars-Wrigley

National Centre for Atmospheric Science

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3