Shifting landscapes: decoupled urban irrigation and greenness patterns during severe drought

Author:

Quesnel Kimberly JORCID,Ajami NewshaORCID,Marx AndrewORCID

Abstract

Abstract Urban outdoor water conservation and efficiency offer high potential for demand-side management, but irrigation, greenness, and climate interlinks must be better understood to design optimal policies. To identify paired transitions during drought, we matched parcel-level water use data from smart, dedicated irrigation meters with high-spatial resolution, multispectral aerial imagery. We examined changes across 72 non-residential parcels using potable or recycled water for large landscape irrigation over four biennial summers (2010, 2012, 2014, and 2016) that encompassed a historic drought in California. We found that despite little change in irrigation levels during the first few years of the drought, parcel greenness deteriorated. Between summers 2010 and 2014, average parcel greenness decreased −61% for potable water irrigators and −56% for recycled water irrigators, providing evidence that vegetation could not reach its vigor from wetter, cooler years as the drought intensified with abnormally high temperatures. Between summers 2014–2016 as drought severity lessened, irrigation rates decreased significantly in line with high drought saliency, but greenness rebounded ubiquitously, on average +110% for potable water irrigators and +62% for recycled water irrigators, demonstrating climate-driven vegetation recovery as evaporation and plant evapotranspiration rates decreased. Transitions were similar for customers with both potable and recycled water; vegetation changes were dominated by the overarching climatic regime. As irrigation cannot always overcome drought conditions, which will become more severe under climate change, to maintain vegetation health, utilities and urban planners should consider the tradeoffs between providing green spaces and water scarcity. This includes evaluating the roles of climate-appropriate landscaping and adaptive reallocation of potable and recycled water resources to enhance water security. By addressing emerging themes in urban water management through analysis of data from forthcoming water metering and aerial imagery technologies, this research provides a unique perspective on water use, greenness, and drought linkages.

Funder

U.S. Environmental Protection Agency

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3