Exploring potential trade-offs in outdoor water use reductions and urban tree ecosystem services during an extreme drought in Southern California

Author:

Torres Rachel,Tague Christina L.,McFadden Joseph P.

Abstract

In Southern California cities, urban trees play a vital role in alleviating heat waves through shade provision and evaporative cooling. Trees in arid to semi-arid regions may rely on irrigation, which is often the first municipal water use to be restricted during drought, causing further drought stress. Finding a balance between efficient water use and maintaining tree health will be crucial for long-term urban forestry and water resources management, as climate change will increase drought and extreme heat events. This study aimed to quantify how urban tree water and carbon fluxes are affected by irrigation reductions, and how that relationship changes with tree species and temperature. We used an ecohydrologic model that mechanistically simulates water, carbon, and energy cycling, parameterized for 5 common tree species in a semi-arid urban area. We simulated a range of irrigation reductions based on average outdoor water use data from the city for a recent extreme drought as well as with warmer temperatures. We then analyzed the response of model outcomes of plant carbon fluxes, leaf area index (LAI), and water use. Results show that reducing irrigation up to 25%, a comparable amount as the California state mandate in 2014, has minimal effects on tree primary productivity and water use efficiency. We found that transpiration was linearly related to irrigation input, which could lead to a short-term loss of evaporative cooling with irrigation reductions during drought. However, primary productivity and LAI had a nonlinear response to irrigation, indicating shade provision could be maintained throughout drought with partial irrigation reductions. Results varied across tree species, with some species showing greater sensitivity of productivity to both irrigation reductions and potentially warmer droughts. These results have implications for water resources management before and during drought, and for urban tree climate adaptation to future drought.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3