Prescribed burning and integrated fire management in the Brazilian Cerrado: demonstrated impacts and scale-up potential for emission abatement

Author:

Franke JonasORCID,Sena Barradas Ana CarolinaORCID,Borges Kelly Maria Resende,Hoffmann Anja A,Filho Juan Carlos Orozco,Ramos Rossano Marchetti,Steil LaraORCID,Roman-Cuesta Rosa MariaORCID

Abstract

Abstract Fire management has proven successful in reducing deforestation, preserving biodiversity and mitigating greenhouse gas (GHG) emissions. After years of zero burning policies in fire-adapted ecosystems, and resulting increases in fire hazards and risks, countries are moving towards integrated fire management (IFM) including prescribed burning (PB). With a primary focus on biodiversity, Brazilian governmental organizations endorsed this paradigm shift in 2014, with the introduction of IFM in a number of protected areas (PA) of the Cerrado. Reducing high intensity mid/late dry season (M/LDS) fires through PB in the early dry season (EDS) has proven successful in other savanna ecosystems, with demonstrated mitigation potential as EDS fires are associated with lower GHG emissions. In the present study, Earth observation data were used to analyze the seasonality of active fires, burned areas and fuel loads. A dynamic performance benchmark (control-treatment paired sample test) was applied to assess the effectiveness of existing IFM activities in promoting emission abatement over the pre-covid period 2014–2019. Compared against the responses of PAs without IFM-PB, the PAs with IFM-PB showed significant increases in EDS fires (+137% hotspots) and EDS burned areas (from a share of 11.2% to 29.5% of the total yearly burned area). Fuel fragmentation through EDS-PB, tracked through calibrated fuel load maps, also led to a 62% reduction in burned areas in the IFM period 2014–2019. Combined M/LDS burned areas decreased from 85.1% of the total yearly burned area to a share of 67.7%. When applying the observed shift in fire seasonality and the effect of burned area reduction to all the PA of the Cerrado for the same period, we estimate an emission abatement potential of 1085 764 tCO2e/y. Given the fact that IFM followed a biodiversity-centred approach in the Cerrado, an emission abatement-centered approach could result in even higher abatement potentials.

Funder

Consortium of International Agricultural Research Centers

United States Agency for International Development

Publisher

IOP Publishing

Reference47 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3