The impact of different CO2 and ODS levels on the mean state and variability of the springtime Arctic stratosphere

Author:

Kult-Herdin JessicaORCID,Sukhodolov TimofeiORCID,Chiodo GabrielORCID,Checa-Garcia RamiroORCID,Rieder Harald EORCID

Abstract

Abstract Rising greenhouse gases (GHG) and decreasing anthropogenic ozone-depleting substances (ODS) are the main drivers of the stratospheric climate evolution in the 21st century. However, the coupling between stratospheric composition, radiation and dynamics is subject to many uncertainties, which is partly because of the simplistic representation of ozone (O3) in many current climate models. Changes in ozone due to heterogeneous chemistry are known to be the largest during springtime in the Arctic, which is also a season with very active stratosphere–troposphere coupling. The focus of this study is to investigate the role of varying ozone levels driven by changing GHG and ODS for the Arctic polar cap stratosphere. We use two state-of-the-art chemistry-climate models with ocean coupling in two configurations (prescribed ozone fields vs. interactive ozone chemistry) for three different scenarios: preindustrial conditions—1 × CO2, year 2000 conditions (peak anthropogenic ODS levels) and extreme future conditions—4 × CO2. Our results show that in the upper and middle stratosphere CO2 thermal cooling is the dominant effect determining the temperature response under 4 × CO2, and outweighs warming effects of ozone by about a factor of ten. In contrast, in the lower stratosphere, the effects of O3 warming and CO2 cooling under 4 × CO2 are largely offsetting each other. ODS driven variations in O3 affect both the temperature mean and variability, and are responsible for the tight springtime coupling between composition and dynamics under year 2000 conditions in comparison to simulations under 1 × CO2 or 4 × CO2.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3