Machine learning-based integration of large-scale climate drivers can improve the forecast of seasonal rainfall probability in Australia

Author:

Feng Puyu,Wang Bin,Liu De Li,Ji Fei,Niu Xiaoli,Ruan Hongyan,Shi Lijie,Yu Qiang

Abstract

Abstract Probabilistic seasonal rainfall forecasting is of great importance for stakeholders such as farmers and policymakers to assist in developing risk management strategies and to inform decisions. In practice, there are two kinds of commonly used tools, dynamical models and statistical models, to provide probabilistic seasonal rainfall forecasts. Dynamical models are based on physical processes but are usually expensive to operate and implement, and rely overly on initial conditions. Statistical models are easy to implement but are usually based on simple or linear relationships between observed variables. Recently, machine learning techniques have been widely used in climate projection and perform well in reproducing historical climate. For these reasons, we conducted a case study in Australia by developing a machine learning-based probabilistic seasonal rainfall forecasting model using multiple large-scale climate indices from the Pacific, Indian and Southern Oceans. Rainfall probabilities of exceeding the climatological median for upcoming seasons from 2011 to 2018 were successively forecasted using multiple climate indices of precedent six months. The performance of the model was evaluated by comparing it with an officially used forecasting model, the SOI (Southern Oscillation Index) phase model (SP) operated by Queensland government in Australia. Results indicated that the random forest (RF) model outperformed the SP model in terms of both distinct forecasts and forecasting accuracy. The RF model increased the percentages of distinct forecasts to 64.9% for spring, to 71.5% for summer, to 65.8% for autumn, and to 63.9% for winter, 1.4 ∼ 3.2 times of the values from the SP model. Forecasting accuracy was also greatly increased by 28%, 167%, 219%, and 76% for four seasons respectively, compared to the SP model. The proposed rainfall forecasting model is based on readily available data, and we believe it can be easily extended to other regions to provide seasonal rainfall outlooks.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3