Monthly Precipitation Outlooks for Mexico Using El Niño Southern Oscillation Indices Approach

Author:

González-González Miguel Angel1ORCID,Corrales-Suastegui Arturo1ORCID

Affiliation:

1. Campo Experimental Pabellón, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Pabellón de Arteaga 20670, Aguascalientes, Mexico

Abstract

The socioeconomic sector increasingly relies on accessible and cost-effective tools for predicting climatic conditions. This study employs a straightforward decision tree classifier model to identify similar monthly ENSO (El Niño Southern Oscillation) conditions from December 2000 to November 2023, using historically monthly ENSO Indices data from December 1950 to November 2000 as a reference. The latter is to construct monthly precipitation hindcasts for Mexico spanning from December 2000 to November 2023 through historically high-resolution monthly precipitation rasters. The model’s performance is evaluated at a global and local scale across seasonal periods (winter, spring, summer, and fall). Assessment using global Hansen–Kuiper Skill Score and Heidkee Skill Score metrics indicates skillful performance across all seasons (>0.3) nationwide. However, local metrics reveal a higher spatial percent of corrects (>0.40) in winter and spring, corresponding to dry seasons, while a lower percent of corrects (<0.40) are observed in more extensive areas during summer and fall, indicative of rainy seasons, due to increased variability in precipitation. The choice of averaging method influences the degree of underestimations and overestimations, impacting the model’s variability. Spearman correlations highlight regions with significant model performance, revealing potential misinterpretations of high hit rates during winter and spring. Notably, during the fall, the model demonstrates spatial skill across most of Mexico, while in the spring, it performs well in the southern and northeastern regions and, in the summer, in the northwestern areas. Integration of accurate forecasts of ENSO Indices to predict precipitation months ahead is crucial for the operational efficacy of this model, given its heavy reliance on anticipating ENSO behavior. Overall, the empirical method exhibits great promise and potential for application in other developing countries directly impacted by the El Niño phenomenon, owing to its low resource costs.

Funder

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) of Mexico

Publisher

MDPI AG

Reference58 articles.

1. Prospects for seasonal forecasting of summer drought and low river flow anomalies in England and Wales;Wedgbrow;Int. J. Climatol.,2002

2. NOAA—National Oceanic and Atmospheric Administration (2022, July 05). National Centers for Environmental Information, Global Climate Reports: 2011, 2012, 2013, 2014, 2015, 2016, Available online: https://www.ncdc.noaa.gov/sotc/global/.

3. Climate change and climate variability impacts on rain-fed agricultural activities and possible adaptation measures. A Mexican case study;Conde;Atmósfera,2006

4. (2022, December 20). CONAGUA/SMN-Comisión Nacional del Agua/Servicio Meteorológico Nacional, Seguimiento Mensual de Afectación por sequía. Available online: https://smn.conagua.gob.mx/tools/DATA/Climatología/Sequía/Monitor%20de%20sequía%20en%20America%20del%20Norte/sequia1211.pdf.

5. (2022, November 10). SIAP-Sistema de Información Agroalimentaria y Pesquera, Anuario Estadístico de la Producción Agrícola 2011. Available online: https://nube.siap.gob.mx/cierreagricola/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3