Satellite evidence of canopy-height dependence of forest drought resistance in southwestern China

Author:

Xu Peipei,Fang WeiORCID,Zhou Tao,Li Hu,Zhao Xiang,Berman Spencer,Zhang Ting,Yi ChuixiangORCID

Abstract

Abstract The frequency and intensity of drought events are increasing with warming climate, which has resulted in worldwide forest mortality. Previous studies have reached a general consensus on the size-dependency of forest resistance to drought, but further understanding at a local scale remains ambiguous with conflicting evidence. In this study, we assessed the impact of canopy height on forest drought resistance in the broadleaf deciduous forest of southwestern China for the 2010 extreme drought event using linear regression and a random forest (RF) model. Drought condition was quantified with standardized precipitation evapotranspiration index (SPEI) and drought resistance was measured with the ratio of normalized difference vegetation index during (i.e. 2010) and before (i.e. 2009) the drought. At the regional scale we found that (a) drought resistance of taller canopies (30 m and up) declined drastically more than that of canopies with lower height under extreme drought (SPEI < −2); (b) RF model showed that the importance of canopy height increased from 17.08% to 20.05% with the increase of drought intensities from no drought to extreme drought. Our results suggest that canopy structure plays a significant role in forest resistance to extreme drought, which has a broad range of implications in forest modeling and resource management.

Funder

China Scholarship Council

Research and Development Program of China

Xiaozheng Du

National Natural Science Foundation of China

Natural Science Foundation of Anhui province of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3