Affiliation:
1. State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
2. Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
3. School of Grassland Science, Beijing Forestry University, Beijing 100083, China
4. Key Laboratory of Agri-Informatics, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Abstract
The increasing frequency of global drought events poses a significant threat to the stability of grassland ecosystems’ functionality. The Inner Mongolian grasslands stand out as one of the world’s most drought-prone regions, facing elevated drought risks compared to other biomes. An in-depth comprehension of the impact of drought on grassland ecosystems is paramount for their long-term sustainability. Using the Standardized Precipitation Evapotranspiration Index (SPEI) from 1982 to 2018, this study identified various drought events within the Inner Mongolian grasslands, encompassing moderate drought, severe drought, and extreme drought. The resistance of the vegetation to the different drought conditions, assessed through net primary productivity (NPP) as a metric (reflecting its capacity to maintain its original level during drought periods), was examined. The research findings indicated that the period from 2001 to 2018 witnessed a substantial increase in both the frequency and the extent of drought events compared to the period from 1982 to 2000, particularly concerning severe and extreme droughts. The areas most severely impacted by extreme drought were the Xilingol League and the Alxa League. From 1982–2000 to 2001–2018, under moderate drought conditions, vegetation resistance exhibited a minor decrease in the central and eastern regions but experienced a slight increase in the western region. In contrast, under severe drought conditions, the western region saw a significant decrease in vegetation resistance. Remarkably, under extreme drought conditions, the western region showed a substantial increase in vegetation resistance, while the central and eastern regions experienced a slight decrease. Across all three drought conditions, as precipitation levels declined, the resistance of the meadow–steppe–desert ecosystems demonstrated a high–low–high distribution pattern. The temperate desert steppe exhibited a minimal vulnerability to drought, boasting resistance levels exceeding 0.9. Notably, extreme drought had the most pronounced impact on the temperate meadow steppe, temperate steppe, and temperate desert steppe, particularly within the temperate meadow steppe category. Given these findings, the authorities responsible for grassland management should prioritize regions characterized by frequent drought occurrences and low drought resistance, such as Ulanqab City, the Xilingol League, and the western part of Hulun Buir City. Safeguarding steppe ecosystems is of paramount importance for stabilizing vegetation productivity and land carbon sinks, especially under the anticipated exacerbation of climate conditions in the future.
Funder
Third Comprehensive Scientific Expedition in Xinjiang
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献