Abstract
Abstract
The high demand for cement-based materials to support building and infrastructure systems is of growing concern as the production of cement leads to significant greenhouse gas (GHG) emissions and notable resource demand. While improved efficiency of cement use has been proposed as a means to mitigate these burdens, the effects of increasing longevity of cement in-use remains a poorly studied area. This work quantitatively explores the implications of using cement for a longer in-use residence times. Specifically, this work uses dynamic material flow analysis models to quantify the in-use stock of cement in the United States from 1900 to 2015. With these models, the implications of increasing or decreasing mean longevity of in-use cement on required cement production, demand for batching water, aggregates, and energy for cement-based materials, and GHG emissions are quantified. This work shows that a 50% increase in cement longevity could have led to a 14% reduction in material resource demand and GHG emissions from concrete production in the United States, equivalent to 0.28 to 0.83 Gt of batching water, 2.9 to 7.6 Gt of aggregates, 1E + 06 to 2.3E + 06 TJ of energy, and 0.4 to 0.7 Gt of CO2-eq emissions. This percent reduction exceeds goals for reducing GHG emissions through alternative energy resources, suggesting improving durability and longevity of in-use cement stock could be a critical means to mitigating environmental impacts.
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Reference62 articles.
1. Green economies around the world? Implications of resource use for development and the environment;Dittrich,2012
2. Net-zero emissions energy systems;Davis;Science,2018
3. Towards sustainable concrete;Monteiro;Nat. Mater.,2017
4. Impacts of booming concrete production on water resources worldwide;Miller;Nat. Sustain.,2018
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献