Observed and simulated local climate responses to tropical deforestation

Author:

Smith CallumORCID,Robertson Eddy,Chadwick RobinORCID,Kelley Douglas IORCID,Argles Arthur P KORCID,Coelho Caio A SORCID,de Souza Dayana C,Kubota Paulo Y,Talamoni Isabela LORCID,Spracklen Dominick VORCID,Baker Jessica C AORCID

Abstract

Abstract Tropical deforestation has local and regional effects on climate, but the sign and magnitude of these effects are still poorly constrained. Here we used satellite observations to evaluate the local land surface temperature and precipitation response to tropical deforestation in historical simulations from 24 CMIP6 models. We found tropical forest loss leads to an observed local dry season warming and reduced wet and dry season precipitation across the range of scales (0.25°-2°) analysed. At the largest scale analysed (2°), we observed a warming of 0.018 ± 0.001 °C per percentage point of forest loss (°C %−1), broadly captured in the multi-model mean response of 0.017 ± 0.005 °C %−1. The multi-model mean correctly simulates reduced precipitation due to forest loss in the dry season but simulates increased precipitation due to forest loss in the wet season, opposite to the observed response. We found that the simulated dry season surface temperature and precipitation changes due to forest loss depend on the simulated surface albedo change, with less warming and less drying in models with greater increases in surface albedo due to forest loss. Increased recognition of the local and regional climate benefits of tropical forests is needed to support sustainable land use policy.

Funder

Newton Fund

HORIZON EUROPE European Research Council

NC-International programme

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3