Local and Nonlocal Biophysical Effects of Historical Land Use and Land Cover Changes in CMIP6 Models and the Intermodel Uncertainty

Author:

Luo Xing1,Ge Jun123ORCID,Cao Yipeng1ORCID,Liu Yu1ORCID,Yang Limei1,Wang Shiyao1,Guo Weidong123ORCID

Affiliation:

1. School of Atmospheric Sciences Nanjing University Nanjing China

2. Joint International Research Laboratory of Atmospheric and Earth System Sciences Nanjing University Nanjing China

3. Frontiers Science Center for Critical Earth Material Cycling Nanjing University Nanjing China

Abstract

AbstractLand use and land cover changes (LULCCs) can influence surface temperature through local and nonlocal biophysical processes, which remain inadequately addressed. In this study, we separate the local and nonlocal effects of historical (1850–2014) LULCCs based on model outputs from the Coupled Model Intercomparison Project Phase 6. We also attempt to explore the sources of intermodel differences in the effects of LULCCs. The multimodel mean shows a cooling effect of −0.05°C (with an intermodel range of −0.24–0.06°C) at the global scale due to cropland and pastureland expansion, consisting of dominant nonlocal cooling of −0.06°C (with an intermodel range of −0.26–0.06°C) and slight local warming of 0.01°C (with an intermodel range of −0.01–0.05°C). The modeling results show some clear consistency in the effects of LULCCs despite considerable intermodel uncertainties. The local effects cause warming at low latitudes and cooling in boreal regions via changes in upward shortwave radiation and sensible and latent heat fluxes. The nonlocal effects mainly cause cooling via decreases in downward longwave radiation and increases in upward shortwave radiation. Intermodel differences in the total effects are dominated by those in the nonlocal effects, which are further attributed to divergent changes in downward longwave radiation and sensible heat flux across the models. This study highlights the importance of the nonlocal effects of LULCCs in terms of strength and intermodel uncertainty, with implications for designing land‐based solutions aimed at climate change mitigation.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3