Mid-20th century warming hole boosts US maize yields

Author:

Partridge Trevor FORCID,Winter Jonathan MORCID,Liu LinORCID,Kendall Anthony DORCID,Basso BrunoORCID,Hyndman David WORCID

Abstract

Abstract The Corn Belt of the United States, one of the most agriculturally productive regions in the world, experienced a globally anomalous decrease in annual temperatures and a concurrent increase in precipitation during the mid- to late-20th century. Here, we quantify the impact of this ‘warming hole’ on maize yields by developing alternative, no warming hole, climate scenarios that are used to drive both statistical and process-based crop models. We show that the warming hole increased maize yields by 5%–10% per year, with lower temperatures responsible for 62% of the simulated yield increase and greater precipitation responsible for the rest. The observed cooling and wetting associated with the warming hole produced increased yields through two complementary mechanisms: slower crop development which resulted in prolonged time to maturity, and lower drought stress. Our results underscore the relative lack of climate change impacts on central US maize production to date, and the potential compounded challenge that a collapse of the warming hole and climate change would create for farmers across the Corn Belt.

Funder

U.S. Department of Agriculture

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3