Abstract
Abstract
Hydroclimatic stresses can negatively impact crop production via water deficits (low soil water supply and high atmospheric demand) or surpluses (high soil water supply and low atmospheric demand). However, the impact of both stresses on crop yields at regional scales is not well understood. Here we quantified yield sensitivities and corresponding spatio-temporal yield losses of US rainfed maize, soybeans, sorghum, and spring wheat to hydroclimatic stresses by considering the joint impacts of root-zone soil moisture and atmospheric evaporative demand from 1981 to 2020. We show that crop yields can be reduced similarly by two major hydroclimatic hazards, which are defined as the most yield damaging conditions over time: ‘Low Supply + High Demand’ and ‘High Supply + Low Demand’. However, more exposure to ‘Low Supply + High Demand’ hazard led to the largest annual yield losses (7%–17%) across all four crops over time. Modeled yield losses due to these hazards were significantly associated with crop insurance lost costs. The extent of yield losses varies considerably by crop and location, highlighting the need for crop-specific and regionally tailored adaptation strategies.
Funder
National Institute of Food and Agriculture
Foundation for Food and Agriculture Research
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献