Opposite eco-hydrological processes in flood and drought years caused comparable anomaly in dry-season canopy growth over southern Amazon

Author:

Zhang Huixian,Liu Yi

Abstract

Abstract While the influences of droughts on Amazon rainforest have been extensively examined, little attention was paid to the extremely wet years characterized by low radiation which may limit the rainforest growth. Here, based on a series of satellite-observed vegetation and hydro-meteorological products, we found a two-stage canopy growth anomaly in the record-breaking wet year 2009, i.e. negative anomalies during April–July followed by positive ones during August–November. Our analysis suggests that, in April–July, low radiation associated with above-average rainfall and cloud cover was the most likely cause for negative anomalies in the canopy growth. In August–November, the rainfall and cloud cover were close to the average, but the solar radiation reaching the land surface was considerably above the average. This was because the atmospheric aerosols were extremely low, resulting from reduced biomass burning activities under the wet conditions. Large-scale positive anomalies in the canopy growth were observed during this 4 month period, mainly driven by the above-average radiation. During the severe drought year 2005, the forest canopy growth also experienced a two-stage process, but in the opposite order from the one in 2009. In April–July, enhanced canopy growth was observed in response to the above-average radiation. With the drought progress and soil water depletion, the canopy senescence was observed during the drought peak in August–November. Interestingly, if we examined the regional canopy growth anomaly during the typical dry season (i.e. July–September), both years showed similarly negative anomalies, but resulting from opposite eco-hydrological processes. This study identifies the explanation for the negative anomalies in the dry-season canopy growth over southern Amazon rainforest in both flood and drought years, and also underscores the necessity to separate different hydro-meteorological stages to better understand vegetation responses to extreme events.

Funder

Nanjing University of Information Science and Technology

the Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3