Assessing the relative importance of dry-season incoming solar radiation and water storage dynamics during the 2005, 2010 and 2015 southern Amazon droughts: not all droughts are created equal

Author:

Liu ShuangORCID,McVicar Tim RORCID,Wu Xue,Cao XinORCID,Liu YiORCID

Abstract

Abstract Three severe droughts impacted the Amazon in 2005, 2010, and 2015, leading to widespread above-average land surface temperature (LST) (i.e. positive thermal anomalies) over the southern Amazon in the dry season (Aug–Sep) of these years. Below-average dry-season incoming solar radiation (SW↓) and terrestrial water storage anomaly (TWSA) were simultaneously observed in 2005 and 2010, whereas the opposite was observed in 2015. We found that anomalies in precipitation (P), SW↓, and TWSA combined can well explain dry-season thermal anomalies during these droughts (average R2–0.51). We investigated the causes for opposing anomalies in dry-season SW↓ and TWSA, and found different hydro-climatological conditions preceding the drought-year dry seasons. In 2005 and 2010, P was considerably below average during the wet-to-dry transition season (May–July), causing below-average TWSA in the dry season that was favorable for fires. Increased atmospheric aerosols resulting from fires reduced solar radiation reaching the ground. In 2015, although below-average dry-season P was observed, it was above the average during the wet-to-dry transition season, leading to reduced fires and aerosols, and increased dry-season SW↓. To further examine the impact of opposite hydro-climatological processes on the drought severity, we compared dry-season LST during droughts with the maximum LST during non-drought years (i.e. LSTmax) for all grid cells, and a similar analysis was conducted for TWSA with the minimum TWSA (i.e. TWSAmin). Accordingly, the regions that suffered from concurrent thermal and water stress (i.e. LST > LSTmax and TWSA < TWSAmin) were identified. These regions are mainly observed over the southeast in 2005 and southern Amazon in 2010. In 2015, large-scale dry-season thermal stress was found over central and southeast Amazon with little water stress. This study underlines the complex interactions of different hydro-climatological components and the importance of understanding the evolution of droughts to better predict their possible impacts on the Amazon rainforest.

Funder

Australian Research Council Training Centre in Data and Analytics for Resources and Environments

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3