Summer heat extremes in northern continents linked to developing ENSO events

Author:

Luo MingORCID,Lau Ngar-Cheung

Abstract

Abstract Understanding the variations of extreme weather/climate events is important to improve the seasonal forecast skill of such harmful events. Previous studies have linked boreal summer hot extremes to decaying El Niño-Southern Oscillation (ENSO) events at the interannual scale, but how these hot extreme episodes respond to developing ENSO events remains unclear. Using observational analyses, we demonstrate strong linkages between developing ENSO and extreme heat events in northern continents. In particular, heat extremes in North America, Eastern Europe–Central Asia and Northeast Asia tend to be more frequent during La Niña developing summers and less frequent during El Niño developing phases. Associated atmospheric changes reveal that developing ENSO events feature a circumglobal teleconnection (CGT) pattern over the mid-latitudes. In the La Niña developing summer, this CGT pattern exhibits enhanced geopotential height and anomalous anticyclones over North Pacific, North America, Eastern Europe–Central Asia and Northeastern Asia, and the jet stream generally shifts northward. The atmospheric circulation changes lead to more persistent weather conditions that favor extreme heat events in mid-latitudes. Conversely, opposite changes associated with developing El Niño can inhibit heat extremes in the above locations. The responses of heat extremes to different types (i.e., conventional Eastern Pacific and Modoki Central Pacific) and durations (1 and 2 year) of ENSO events are also discussed.

Funder

Guangdong Pearl River Talents Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3