Macro- and micro-plastics change soil physical properties: a systematic review

Author:

Maqbool AhsanORCID,Soriano María-AuxiliadoraORCID,Gómez José AlfonsoORCID

Abstract

Abstract Plastic pollution in terrestrial environments is a global issue due to its adverse effects on soil health, with negative impacts on ecosystem services and food production. However, the enormous heterogeneity of both plastic and soil characteristics complicate the assessment of the impact and overall trends in plastic-induced changes in soil properties beyond experimental conditions. In this work, we have carried out a systematic and in-depth review of the existing literature on the impact of plastics on soil physical properties. To this end, we have quantified the effects of macro- (MaP, >5000 μm) and micro-plastics (MiP, <5000 μm) on soil bulk density, soil porosity, water-stable aggregates (WSAs), saturated hydraulic conductivity, and soil moisture at field capacity (FC), based on four characteristics of plastics: polymer types, shapes and sizes of plastic particles, and plastic concentrations in soil. Results showed that MaPs and MiPs significantly modified the values of the analyzed soil physical properties compared to the control without plastic in over 50% of the experimental dataset, albeit with a large variability, from a reduction to an increase in values, depending on the specific experimental conditions and the soil physical property. Depending on the plastic concentration, soil bulk density and porosity decreased moderately (4%–6%) with MiP and MaP. MiP reduced WSA by an average of 20%, ranging from a 40% decrease to a 20% increase depending on the shapes and concentration of MiP. Saturated hydraulic conductivity changed depending on the polymer types, shapes, and concentrations of MaP and MiP, varying from a 70% decrease to a 40% increase. Soil water content at FC varied depending on the soil texture, and concentration and sizes distribution of conventional MiP, decreasing from 10% to 65%. However, biodegradable plastic increased soil water content at FC. The few studies available provide evidence that not enough attention is being paid to soil physical properties influenced by plastic input. It is recommended to consider the wide range of characteristics of MaP and MiP and their effects on soil physical properties in future studies, for an advance understanding of the impact of MiP and MaP on soil health in the medium-long term under different environmental conditions.

Funder

H2020 Marie Skłodowska-Curie Actions

European Cooperation in Science and Technology

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3