Extreme event impacts on CO2 fluxes across a range of high latitude, shrub-dominated ecosystems

Author:

Treharne RachaelORCID,Bjerke Jarle W,Tømmervik HansORCID,Phoenix Gareth K

Abstract

Abstract The Arctic is experiencing an increased frequency of extreme events which can cause landscape-scale vegetation damage. Extreme event-driven damage is an important driver of the decline in vegetation productivity (termed ‘Arctic browning’) which has become an increasingly important component of pan-Arctic vegetation change in recent years. A limited number of studies have demonstrated that event-driven damage can have major impacts on ecosystem CO2 balance, reducing ecosystem carbon sink strength. However, although there are many different extreme events that cause Arctic browning and different ecosystem types that are affected, there is no understanding of how impacts on CO2 fluxes might vary between these, or of whether commonalities in response exist that would simplify incorporation of extreme event-driven Arctic browning into models. To address this, the impacts of different extreme events (frost-drought, extreme winter warming, ground icing and a herbivore insect outbreak) on growing season CO2 fluxes of Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and ecosystem respiration (Reco) were assessed at five sites from the boreal to High Arctic (64°N-79°N) in mainland Norway and Svalbard. Event-driven browning had consistent, major impacts across contrasting sites and event drivers, causing site-level reductions of up to 81% of NEE, 51% of GPP and 37% of Reco. Furthermore, at sites where plot-level NDVI (greenness) data were obtained, strong linear relationships between NDVI and NEE were identified, indicating clear potential for impacts of browning on CO2 balance to be consistently, predictably related to loss of greenness across contrasting types of events and heathland ecosystems. This represents the first attempt to compare the consequences of browning driven by different extreme events on ecosystem CO2 balance, and provides an important step towards a better understanding of how ecosystem CO2 balance will respond to continuing climate change at high latitudes.

Funder

Natural Environment Research Council

EEA Norway Grants

FRAM – High North Research Centre for Climate and the Environment

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3