Managing forest carbon and landscape capacities

Author:

Boisvenue CélineORCID,Paradis GregoryORCID,Eddy Ian M SORCID,McIntire Eliot J BORCID,Chubaty Alex MORCID

Abstract

Abstract Widespread impacts of a warming planet are fuelling climate change mitigation efforts world-wide. Decision makers are turning to forests, the largest terrestrial primary producer, as a nature-based contribution to mitigation efforts. Resource-based economies, however, have yet to include carbon (C) in their resource planning, slowing the implementation of these important measures for atmospheric greenhouse gas reduction. The realisation of forest mitigation potential depends greatly on our ability to integrate C-sequestration practices in our forest management applications. This requires robust C-estimates, an understanding of the natural potential for a specific landscape to sequester C, the current state of the landscape relative to this potential, and the evaluation of management practices as a tool to sequester forest C in the midst of all the other values forests offer humans. Discrepancies between models used in management decisions and C estimation are the first hurdle impeding the application of forest-based mitigation strategies. Here, we combine forest disturbance and management models with a well-established C model on an open-source simulation platform. We then use the modelling system to produce C estimates of the natural C-holding capacity (potential) and two management scenarios for a study area in BC, Canada. Our simulations provide an essential metric if forests are to be managed for C-sequestration: the natural landscape C-holding capacity. Our simulations also point to a decreasing trend in simulated C on the study area over time and to a bias of the current C-levels compared to the landscape C-holding capacity (477 vs 405.5 MtC). Our explanations for this bias may provide an avenue for improved current C-state estimates. We provide a framework and the information needed for the implementation of nature-based solutions using forests for climate change mitigation. This study is a step towards modelling systems that can unify scientifically based forest management and informed C-management.

Funder

Canadian Government

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3