Effect of nitrogen deposition on centennial forest water-use efficiency

Author:

Gharun ManaORCID,Klesse Stefan,Tomlinson Gregory,Waldner Peter,Stocker Benjamin,Rihm Beat,Siegwolf Rolf,Buchmann NinaORCID

Abstract

Abstract The uptake of carbon dioxide (CO2) from the atmosphere through photosynthesis is accompanied by an inevitable loss of water vapor through the stomata of leaves. The rate of leaf-level CO2 assimilation per unit stomatal conductance, i.e. intrinsic water-use efficiency (WUEi), is thus a key characteristic of terrestrial ecosystem functioning that is central to the global hydroclimate system. Empirical evidence and theory suggest a positive response of forest WUE to increased CO2 levels globally. Although evidence exists for a positive effect of ecosystem nitrogen (N) inputs on WUEi, it is not clear how trends in atmospheric N deposition have affected WUEi in the past. Here we combine twentieth-century climate and nitrogen deposition with stable isotope signature in tree rings and document a WUEi trend reversal at two sites in Switzerland, that matches the timing of a trend reversal in atmospheric N deposition. Using generalized additive models (GAMs), we fitted observed WUEi time series to multiple environmental covariates. This suggested N deposition to have a significant effect on long-term WUEi at the site that was exposed to higher N deposition levels. The ratio of the increase in WUEi in response to increase in CO2 (dWUEi/dCO2) declined by 96% after 1980 (from 0.53 to 0.02) in the beech forest and declined by 72% in the spruce forest (from 0.46 to 0.13) concurrent with a sharp decline in N deposition. Using the GAM model for two scenarios, we show that had N deposition levels not declined after 1980s, WUEi would have increased more strongly in response to increasing CO2. Although the increase in N deposition was limited to the 1950–1980 decades and the signals have declined with improvements in air quality across Europe, the role of atmospheric pollution must be reconsidered in interpretation of tree ring studies and for building environmental proxies that are pivotal to understanding future sink capacity of terrestrial ecosystems in response to climate change.

Funder

Swiss National Science Foundation

ICOS‐CH

iTREE

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3