Climate warming outweighs vegetation greening in intensifying flash droughts over China

Author:

Zhang MiaoORCID,Yuan XingORCID,Otkin Jason AORCID,Ji PengORCID

Abstract

Abstract The increasing occurrence of flash droughts with rapid onsets poses a great threat to food security and ecosystem productivity. While temporal trends in flash droughts have been extensively studied, the contributions of climate warming, vegetation greening, and the physiological effect of rising CO2 to trends in flash drought characteristics remain unclear. Here we show there are significant increasing trends in flash drought frequency, duration, and intensity for most of China during 1961–2016. Warmer temperatures and vegetation greening increase evapotranspiration and decrease soil moisture, and explain 89% and 54% of the increasing frequency of flash drought respectively. Rising CO2 concentrations reduce stomatal conductance, which acts to decelerate the increasing drought frequency trend by 18%, whereas the physiological effects of rising CO2 on flash drought duration and intensity are smaller. Warming also outweighs vegetation greening for the increasing trends of flash drought duration and intensity over most of China, except North China. Our study highlights the role of climate warming in increasing the risk of flash droughts.

Funder

Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3