Theoretical evaluation on CO2 removal potential of enhanced weathering based on shrinking core model

Author:

Chen Anqi,Chen Zhuo,Lin Bo-Lin

Abstract

Abstract The discrepancy between current CO2 emission trend and the targeted 1.5 °C warming requires the implementation of carbon dioxide removal (CDR) technologies. Among the engineered CDRs, enhanced weathering (EW) is expected to exhibit substantial potential for CO2 removal, owing to the availability of abundant reserves of ultramafic rocks and demonstration of worldwide liming practice. While the shrinking core model (SCM) has been commonly adopted in previous theoretical and experimental studies, there still lacks a comprehensive assessment on the impacts of model parameters, such as rock particle size, size distribution, weathering rate and time length on the weathering kinetics and the resultant CDR potential. Herein, this study incorporates particle size distribution of rock powder into the surface reaction-controlled SCM, and conducts sensitivity analysis on EW’s CDR potential quantitatively. Even fully powered by low-carbon energy in the optimistic case, the application of EW with olivine only achieves maximum CDR per unit of rock and energy consumption of 0.01 kg CO2 per kg rock and 19 g per kWh at size of 8 and 22 μm respectively, indicating the limitations of EW. The derived optimal application parameters with olivine powers within 3.7–79 μm provide valuable insights into the practical real-world applications to achieve net CO2 removal.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3