Development of Sustainable Construction Materials from Inert Waste Mixtures Using the Mechanosynthesis Process

Author:

Hamzaoui Rabah12ORCID,Bouchenafa Othmane3ORCID,Idir Rachida4ORCID,Djerbi Assia5,Fen-Chong Teddy5ORCID,Florence Céline1,Boutin François6

Affiliation:

1. Institut de Recherche, ESTP/Université Paris-Est, 28 Avenue du Président Wilson, 94234 Cachan, France

2. Microbusiness (Low Carbon Construction Materials), 29 Avenue Leon Blum, 94230 Cachan, France

3. Concrete4change Ltd., Unit 4-5-7—The Heathcoat Building, Nottingham Science & Technology Park, University Boulevard, Nottingham NG7 2QJ, UK

4. Cerema, Univ Gustave Eiffel, UMR MCD, F-77171 Sourdun, France Cerema, 110 Rue de Paris, 77171 Sourdun, France

5. Univ Gustave Eiffel, Cerema, UMR MCD, 5 Boulevard Descartes Champs-sur-Marne, 77454 Marne-la-Vallée Cedex, France

6. CSTB, 84 Avenue Jean Jaurès, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex, France

Abstract

This research investigates the potential of mechanosynthesis to transform inert waste mixtures into sustainable construction materials. Three waste streams were employed: recycled glass, recycled concrete, and excavated soils. Two alternative material formulations, F1 (50% recycled concrete, 30% recycled glass, 20% excavated soil) and F2 (60% excavated soil, 20% recycled concrete, 20% recycled glass), were developed. Cement pastes were produced by partially substituting cement (CEM I) with 50% of either F1 or F2. Characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (ATR-FTIR), and mechanical testing, were performed. Cement pastes incorporating milled waste materials exhibited significantly enhanced compressive strength compared to their unmilled counterparts. At 28 curing days, compressive strengths reached 44, 47, 45, and 49.7 MPa, and at 90 curing days, they increased to 47.5, 50, 55, and 61 MPa for milling conditions of 200 rpm for 5 min, 200 rpm for 15 min, 400 rpm for 5 min, and 400 rpm for 15 min, respectively. In addition, F1 formulations showed higher compressive strengths than the reference CEM II and CEM III pastes. These results highlight the efficacy of mechanosynthesis in valorizing construction waste, mitigating CO2 emissions, and creating environmentally friendly construction materials.

Funder

ComUE Paris-Est Sup

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3