Temporal and spatial changes in hydrological wet extremes of the largest river basin on the Tibetan Plateau

Author:

Wang YuanweiORCID,Wang Suheng,Wang Lei,Guo Xiaoyu,Zhou Jing,Chai Chenhao,Xu Jie,Li XiangfeiORCID,Fan Mengtian,Wang Shengfeng,Zhao Lin

Abstract

Abstract Global warming accelerates the rate of inter-regional hydrological cycles, leading to a significant increase in the frequency and intensity of hydrological wet extremes. The Tibetan Plateau (TP) has been experiencing a rapid warming and wetting trend for decades. This trend is especially strong for the upper Brahmaputra basin (UBB) in the southern TP. The UBB is the largest river on the TP, and these changes are likely to impact the water security of local and downstream inhabitants. This study explores the spatial-temporal variability of wet extremes in the UBB from 1981–2019 using a water- and energy-budget distributed hydrological model (WEB-DHM) to simulate river discharge. The simulated results were validated against observed discharge from the Ministry of Water Resources at a mid-stream location and our observations downstream. The major findings are as follows: (1) the WEB-DHM model adequately describes land-atmosphere interactions (slight underestimation of −0.26 K in simulated annual mean land surface temperature) and can accurately reproduce daily and monthly discharge (Nash-Sutcliffe efficiency is 0.662 and 0.796 respectively for Nuxia station); (2) although extreme discharge generally occurs in July and is concentrated in the southeastern TP, extreme wet events in the UBB are becoming increasingly frequent (after 1998, the number of extreme days per year increased by 13% compared to before) and intense (maximum daily discharge increased with a significant trend of 444 (m3s−1) yr−1), and are occurring across a wider region; (3) Precipitation is more likely to affect the intensity and spatial distribution of wet extremes, while the air temperature is more correlated with the frequency. Our wet extreme analysis in the UBB provides valuable insight into strategies to manage regional water resources and prevent hydrological disasters.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3