Stronger Arctic amplification from ozone-depleting substances than from carbon dioxide

Author:

Liang Yu-ChiaoORCID,Polvani Lorenzo MORCID,Previdi MichaelORCID,Smith Karen LORCID,England Mark RORCID,Chiodo GabrielORCID

Abstract

Abstract Arctic amplification (AA)—the greater warming of the Arctic near-surface temperature relative to its global mean value—is a prominent feature of the climate response to increasing greenhouse gases. Recent work has revealed the importance of ozone-depleting substances (ODS) in contributing to Arctic warming and sea-ice loss. Here, using ensembles of climate model integrations, we expand on that work and directly contrast Arctic warming from ODS to that from carbon dioxide (CO2), over the 1955–2005 period when ODS loading peaked. We find that the Arctic warming and sea-ice loss from ODS are slightly more than half (52%–59%) those from CO2. We further show that the strength of AA for ODS is 1.44 times larger than that for CO2, and that this mainly stems from more positive Planck, albedo, lapse-rate, and cloud feedbacks. Our results suggest that AA would be considerably stronger than presently observed had the Montreal Protocol not been signed.

Funder

NSF

MOST

Swiss Ambizione

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3