Stronger Arctic amplification produced by decreasing, not increasing, CO2 concentrations

Author:

Zhou Shih-Ni,Liang Yu-ChiaoORCID,Mitevski Ivan,Polvani Lorenzo MORCID

Abstract

Abstract Arctic amplification (AA), referring to the phenomenon of amplified warming in the Arctic compared to the warming in the rest of the globe, is generally attributed to the increasing concentrations of carbon dioxide (CO2) in the atmosphere. However, little attention has been paid to the mechanisms and quantitative variations of AA under decreasing levels of CO2, when cooling where the Arctic region is considerably larger than over the rest of the planet. Analyzing climate model experiments forced with a wide range of CO2 concentrations (from 1/8× to 8×CO2, with respect to preindustrial levels), we show that AA indeed occurs under decreasing CO2 concentrations, and it is stronger than AA under increasing CO2 concentrations. Feedback analysis reveals that the Planck, lapse-rate, and albedo feedbacks are the main contributors to producing AAs forced by CO2 increase and decrease, but the stronger lapse-rate feedback associated with decreasing CO2 level gives rise to stronger AA. We further find that the increasing CO2 concentrations delay the peak month of AA from November to December or January, depending on the forcing strength. In contrast, decreasing CO2 levels cannot shift the peak of AA earlier than October, as a consequence of the maximum sea-ice increase in September which is independent of forcing strength. Such seasonality changes are also presented in the lapse-rate feedback, but do not appear in other feedbacks nor in the atmospheric and oceanic heat transport processeses. Our results highlight the strongly asymmetric responses of AA, as evidenced by the different changes in its intensity and seasonality, to the increasing and decreasing CO2 concentrations. These findings have significant implications for understanding how carbon removal could impact the Arctic climate, ecosystems, and socio-economic activities.

Funder

Ministry of Science and Technology

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3