Anthropogenic–biogenic interaction amplifies warming from emission reduction over the southeastern US

Author:

Liu YawenORCID,Liu YamanORCID,Wang Minghuai,Dong Xinyi,Zheng Yiqi,Shrivastava Manish,Qian Yun,Bai Heming,Li Xiao,Yang Xiu-Qun

Abstract

Abstract A decline of surface biogenic secondary organic aerosols through the mediation of reduced anthropogenic aerosols has been recognized as an air quality co-benefit of anthropogenic emission control over the southeastern US. However, the climate impacts of this anthropogenic–biogenic interaction remain poorly understood. Here, we identified a substantial decline of summertime aerosol loading aloft over the southeastern US in recent decades through the interaction, which leads to a stronger decline in column-integrated aerosol optical depth and a greater increase in radiative fluxes over the southeastern than northeastern US, different from trends of anthropogenic emissions and near-surface aerosol loading. The anthropogenic–biogenic interaction is shown to explain more than 60% of the coherent increasing trend of 5.3 Wm−2decade−1 in clear-sky surface downward radiative fluxes. We show that current climate models fail to represent this interaction. The interaction is further projected to amplify the positive radiative forcing from emission control by 42.3% regionally over the southeastern US and globally by 5.4% in 2050 under RCP4.5 compared to 2005. This amplification effect implies greater challenges to achieving the Paris Agreement temperature targets with continuous emission control in future.

Funder

National Natural Science Foundation of China

Double innovation project in Jiangsu

Ministry of Science and Technology of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3