Abstract
Abstract
Soil moisture, typically defined as the amount of water in the unsaturated soil layer, is a central component of the hydrological cycle. The potential impacts of climate change on soil moisture have been less specifically studied than those on river flows, despite soil moisture deficits/excesses being a factor in a range of natural hazards, as well as having obvious importance for agriculture. Here, 1 km grids of monthly mean soil moisture content are simulated using a national-scale grid-based hydrological model, more typically applied to look at changes in river flows across Britain. A comparison of the soil moisture estimates from an observation-based simulation, with soil moisture deficit data from an operational system developed by the UK Met Office (Meteorological Office Rainfall and Evaporation Calculation System; MORECS), shows relatively good correspondence in soil drying and wetting dates, and in the month when soils are driest. The UK Climate Projections 2018 Regional projections are then used to drive the hydrological model, to investigate changes in occurrence of indicative soil moisture extremes and changes in typical wetting and drying dates of soils across the country. Analyses comparing baseline (December 1981–November 2011) and future (December 2050–November 2080) time-slices suggest large increases in the spatial occurrence of low soil moisture levels, along with later soil wetting dates, although changes to soil drying dates are less clear. Such information on potential future changes in soil moisture is important to enable the development of appropriate adaptation strategies for a range of sectors vulnerable to soil moisture levels.
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献