Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
-
Published:2024-06-20
Issue:12
Volume:28
Page:2635-2650
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Griffin AdamORCID, Kay Alison L.ORCID, Sayers Paul, Bell Victoria, Stewart ElizabethORCID, Carr Sam
Abstract
Abstract. An event-based approach has been used to explore the potential effects of climate change on the spatial and temporal coherence of widespread flood events in Great Britain. Time series of daily mean river flow were generated using a gridded national-scale hydrological model (Grid-to-Grid) driven by a 12-member ensemble of regional climate projections from UK Climate Projections 2018 (UKCP18), for 30-year baseline (1980–2010) and future (2050–2080) time slices. From these, sets of widespread extreme events were extracted. The question of what defines a “widespread flood event” is discussed; here it was defined as an event exceeding an at-site 99.5th percentile (equivalent to 2 d per year) simultaneously over an area of at least 20 km2, with a maximum duration of 14 d. This resulted in a set of 14 400 widespread events: approximately 20 events per year, per ensemble member, per time slice. Overall, results have shown that events are more temporally concentrated in winter in the future time slice compared to the baseline. Distributions of event area were similar in both time slices, but the distribution of at-site return periods showed some heavier tails in the future time slice. Such information could be useful for adaptation planning and risk management for floods under climate change, but the potential future changes have to be interpreted in the context of some differences in event characteristics between the baseline climate-projection-driven model runs and an observation-driven model run. While the focus here is Great Britain, the methods and analyses described could be applied to other regions with hydrological models and climate projections of appropriate resolution.
Funder
UK Research and Innovation
Publisher
Copernicus GmbH
Reference65 articles.
1. Barker, L., Hannaford, J., Muchan, K., Turner, S., and Parry, S.: The winter 2015/2016 floods in the UK – a hydrological appraisal, Weather, 71, 324–333, https://doi.org/10.1002/wea.2822, 2016. 2. Bell, V. A., Kay, A. L., Jones, R. G., Moore, R. J., and Reynard, N. S.: Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK, J. Hydrol., 377, 335–350, https://doi.org/10.1016/j.jhydrol.2009.08.031, 2009. 3. Bell, V. A., Kay, A. L., Cole, S. J., Jones, R. G., Moore, R. J., and Reynard, N. S.: How might climate change affect river flows across the Thames basin? An area-wide analysis using the UKCP09 regional climate model ensemble, J. Hydrol., 442, 89–104, https://doi.org/10.1016/j.jhydrol.2012.04.001, 2012. 4. Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and Kirchner, J. W.: The Relative Importance of Different Flood-Generating Mechanisms Across Europe, Water Resour. Res., 55, 4582–4593, https://doi.org/10.1029/2019WR024841, 2019. 5. Bevacqua, E., Shepherd, T. G., Watson, P. A. G., Sparrow, S., Wallom, D., and Mitchell, D.: Larger spatial footprint of wintertime total precipitation extremes in a warmer climate, Geophys. Res. Lett., 48, e2020GL091990, https://doi.org/10.1029/2020GL091990, 2021.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|