Development of detailed pediatric eye models for lens dose calculations

Author:

Han HaeginORCID,Yeom Yeon SooORCID,Nguyen Thang Tat,Choi ChansooORCID,Shin BanghoORCID,Moon SunghoORCID,Ha SangseokORCID,Son GaheeORCID,Augusteyn Robert,Kim Chan Hyeong

Abstract

Abstract The International Commission on Radiological Protection (ICRP) recently reduced the dose limit for the eye lens for occupational exposure from 150 mSv yr−1 to 20 mSv yr−1, as averaged over defined periods of five years, with no annual dose in a single year exceeding 50 mSv, emphasizing the importance of the accurate estimation of lens dose. In the present study, for more accurate lens dosimetry, detailed eye models were developed for children and adolescents (newborns and 1, 5, 10, and 15 year olds), which were then incorporated into the pediatric mesh-type reference computational phantoms (MRCPs) and used to calculate lens dose coefficients (DCs) for photon and electron exposures. Finally, the calculated values were compared with those calculated with the adult MRCPs in order to determine the age dependence of the lens DCs. For photon exposures, the lens DCs of the pediatric MRCPs showed some sizable differences from those of the adult MRCPs at very low energies (10 and 15 keV), but the differences were all less than 35%, except for the posterior-anterior irradiation geometry, for which the lens dose is not of primary concern. For electron exposures, much larger differences were found. For the anterior-posterior (AP) and isotropic irradiation geometries, the largest differences between the lens DCs of the pediatric and adult phantoms were found in the energy range of 0.6–1 MeV, where the newborn lens DCs were larger by up to a factor of ∼5 than the adult. The lens DCs of the present study, which were calculated for the radiosensitive region of the lens, also were compared with those for the entire lens in the AP irradiation geometry. Our results showed that the DCs of the entire lens were similar to those of the radiosensitive region for 0.02–2 MeV photons and >2 MeV electrons, but that for the other energy ranges, significant differences were noticeable, i.e. 10%–40% for photons and up to a factor of ∼5 for electrons.

Funder

Nuclear Safety and Security Commission

MOTIE

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,Waste Management and Disposal,General Medicine

Reference54 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3