Development of Respiratory Tract Organs for ICRP Pediatric Mesh-type Reference Computational Phantoms

Author:

Choi Chansoo1,Shin Bangho2,Yeom Yeon Soo3,Kim Chan Hyeong2,Bolch Wesley E.1,Jokisch Derek W.,Han Haegin2,Lee Choonsik4,Chung Beom Sun5

Affiliation:

1. J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL

2. Department of Nuclear Engineering, Hanyang University, Seoul, Republic of Korea

3. Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea

4. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD

5. Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Abstract

Abstract As part of the activities of the International Commission on Radiological Protection (ICRP) Task Group 103, the present study developed a new set of respiratory tract organs consisting of the extrathoracic, bronchial, bronchiolar, and alveolar-interstitial regions for newborn, 1-, 5-, 10-, and 15-y-old males and females for use in pediatric mesh-type reference computational phantoms. The developed respiratory tract organs, while preserving the original topologies of those of the pediatric voxel-type reference computational phantoms of ICRP Publication 143, have improved anatomy and detailed structure and also include μm-thick target and source regions prescribed in ICRP Publication 66. The dosimetric impact of the developed respiratory tract organs was investigated by calculating the specific absorbed fraction for internal electron exposures, which were then compared with the ICRP Task Group 96 values. The results showed that except for the alveolar-interstitial region as a source region, the pediatric mesh phantoms showed larger specific absorbed fractions than the Task Group 96 values. The maximum difference was a factor of ~3.5 for the extrathoracic-2 basal cell and surface as target and source regions, respectively. These results reflect the differences in the target masses and geometry caused by the anatomical enhancement of the pediatric mesh phantoms. For the alveolar-interstitial region as a source region, the pediatric mesh phantoms showed larger values for low energy ranges and lower values with increasing energies, owing to the differences in the size and shape of the alveolar-interstitial region.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3