Abstract
Abstract
We report a numerical design procedure for pursuing a near-unity coupling efficiency in quantum dot (QD)-cavity ridge waveguide single-photon sources (SPSs) by performing simulations with the finite element method. Our optimum design which is based on a 1D nanobeam cavity, achieves a high source efficiency ε
xy
of 97.7% for an isotropic in-plane dipole, together with a remarkable Purcell factor of 38.6. Such a good performance is mainly attributed to the high index contrast of GaAs/SiO2 and a careful cavity design achieving constructive interference and low scattering losses. Furthermore, we analyze the bottleneck of the proposed platform, which is the mode mismatch between the cavity mode and the Bloch mode in the nanobeam. Accordingly, we present the optimization recipe of an arbitrarily high-efficiency on-chip SPS by implementing a taper section, whose high smoothness is beneficial to gradually overcoming the mode mismatch, and therefore leading to a higher Purcell factor and source efficiency. Finally, we see good robustness of the source properties in the taper-nanobeam system under the consideration of realistic fabrication imperfections on the hole variation and QD position deviation.
Funder
Horizon 2020 Framework Programme
Danmarks Frie Forskningsfond
H2020 Marie Skłodowska-Curie Actions
Participating States
H2020 European Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献