Abstract
Abstract
Objective. Although various driving fatigue detection strategies have been introduced, the limited practicability is still an obstacle for the real application of these technologies. This study is based on the newly proposed non-hair-bearing (NHB) method to achieve practical driving fatigue detection with fewer channels from NHB areas and more efficient electroencephalogram (EEG) features. Approach. EEG data were recorded from 20 healthy subjects (15 males, age = 22.2 ± 3.2 years) in a 90 min simulated driving task using a remote wireless cap. Behaviorally, subjects demonstrated a salient fatigue effect, as reflected by a monotonic increase in reaction time. Using a sliding-window approach, we determined the vigilant and fatigued states at individual level to reduce the inter-subject differences in behavioral impairment and brain activity. Multiple EEG features, including power-spectrum density (PSD), functional connectivity (FC), and entropy, were estimated in a pairwise manner, which were set as input for fatigue classification. Main results. Intriguingly, this data-driven approach showed that the best classification performance was achieved using three EEG channel pairs located in the NHB area. The mixed features of the frontal NHB area lead to the high within-subject detection rate of driving fatigue (92.7% ± 0.92%) with satisfactory generalizability for fatigue classification across different subjects (77.13% ± 0.85%). Moreover, we found the most prominent contributing features were PSD of different frequency bands within the frontal NHB area and FC within the frontal NHB area and between frontal and parietal areas. Significance. In summary, the current work provided objective evidence to support the effectiveness of the NHB method and further improved the performance, thereby moving a step forward towards practical driving fatigue detection in real-world scenarios.
Funder
National Natural Science Foundation of China
Zhejiang University
Fundamental Research Funds for the Central Universities
Major Scientific Project of Zhejiang Laboratory
Zhejiang Provincial Natural Science Foundation of China
Navy Aviation Equipment Research Project
Subject
Physiology (medical),Biomedical Engineering,Physiology,Biophysics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献