FedUSL: A Federated Annotation Method for Driving Fatigue Detection based on Multimodal Sensing Data

Author:

Yu Songcan1,Yang Qinglin1,Wang Junbo1,Wu Celimuge2

Affiliation:

1. Sun Yat-Sen University Shenzhen, China

2. The University of Electro-Communications Tokyo, Japan

Abstract

Single-modal data has a limitation on fatigue detection, while the shortage of labeled data is pervasive in multimodal sensing data. Besides, it is a time-consuming task for board-certified experts to manually annotate the physiological signals, especially hard for EEG sensor data. To solve this problem, we propose FedUSL (Federated Unified Space Learning), a federated annotation method for multimodal sensing data in the driving fatigue detection scenario, which has the innate ability to exploit more than four multimodal data simultaneously for correlations and complementary with low complexity. To validate the efficiency of the proposed method, we first collect the multimodal data (aka, camera, physiological sensor) through simulated fatigue driving. The data is then preprocessed and features are extracted to form a usable multimodal dataset. Based on the dataset, we analyze the performance of the proposed method. The experimental results demonstrate that FedUSL outperforms other approaches for driver fatigue detection with carefully selected modal combinations, especially when a modality contains only \(10\% \) labeled data.

Publisher

Association for Computing Machinery (ACM)

Reference57 articles.

1. Stockholm Declaration. 2020. Third global ministerial conference on road safety: achieving global goals 2030. (2020). https://www.roadsafetysweden.com/contentassets/b37f0951c837443eb9661668d5be439e/stockholm-declaration-english.pdf

2. Paul M Salmon, Gemma JM Read, Vanessa Beanland, Jason Thompson, Ashleigh J Filtness, Adam Hulme, Rod McClure, and Ian Johnston. 2019. Bad behaviour or societal failure? Perceptions of the factors contributing to drivers’ engagement in the fatal five driving behaviours. Applied ergonomics 74(2019), 162–171.

3. Ingrid van Schagen. 2020. European Road Safety Observatory Road Safety Thematic Report-Fatigue. (2020). https://road-safety.transport.ec.europa.eu/system/files/2021-07/road_safety_thematic_report_fatigue_tc_final.pdf.

4. SWOV. 2019. Fatigue. SWOV Fact sheet, September 2019. (2019). https://swov.nl/sites/default/files/bestanden/downloads/FS%20Fatigue.pdf.

5. Intelligent Driver Drowsiness Detection for Traffic Safety Based on Multi CNN Deep Model and Facial Subsampling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3