Temporal complexity of EEG encodes human alertness

Author:

Hadra MohammadORCID,Omidvarnia AmirORCID,Mesbah MostefaORCID

Abstract

Abstract Objective. Automatic human alertness monitoring has recently become an important research topic with important applications in many areas such as the detection of drivers’ fatigue, monitoring of monotonous tasks that require a high level of alertness such as traffic control and nuclear power plant monitoring, and sleep staging. In this study, we propose that balanced dynamics of Electroencephalography (EEG) (so called EEG temporal complexity) is a potentially useful feature for identifying human alertness states. Recently, a new signal entropy measure, called range entropy (RangeEn), was proposed to overcome some limitations of two of the most widely used entropy measures, namely approximate entropy (ApEn) and Sample Entropy (SampEn), and showed its relevance for the study of time domain EEG complexity. In this paper, we investigated whether the RangeEn holds discriminating information associated with human alertness states, namely awake, drowsy, and sleep and compare its performance against those of SampEn and ApEn. Approach. We used EEG data from 60 healthy subjects of both sexes and different ages acquired during whole night sleeps. Using a 30 s sliding window, we computed the three entropy measures of EEG and performed statistical analyses to evaluate the ability of these entropy measures to discriminate among the different human alertness states. Main results. Although the three entropy measures contained useful information about human alertness, RangeEn showed a higher discriminative capability compared to ApEn and SampEn especially when using EEG within the beta frequency band. Significance. Our findings highlight the EEG temporal complexity evolution through the human alertness states. This relationship can potentially be exploited for the development of automatic human alertness monitoring systems and diagnostic tools for different neurological and sleep disorders, including insomnia.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3