Spatial–temporal features-based EEG emotion recognition using graph convolution network and long short-term memory

Author:

Zheng Fa,Hu Bin,Zheng XiangweiORCID,Zhang Yuang

Abstract

Abstract Objective. Emotion recognition on the basis of electroencephalography (EEG) signals has received a significant amount of attention in the areas of cognitive science and human–computer interaction (HCI). However, most existing studies either focus on one-dimensional EEG data, ignoring the relationship between channels, or only extract time–frequency features while not involving spatial features. Approach. We develop spatial–temporal features-based EEG emotion recognition using a graph convolution network (GCN) and long short-term memory (LSTM), named ERGL. First, the one-dimensional EEG vector is converted into a two-dimensional mesh matrix, so that the matrix configuration corresponds to the distribution of brain regions at EEG electrode locations, thus to represent the spatial correlation between multiple adjacent channels in a better way. Second, the GCN and LSTM are employed together to extract spatial–temporal features; the GCN is used to extract spatial features, while LSTM units are applied to extract temporal features. Finally, a softmax layer is applied to emotion classification. Main results. Extensive experiments are conducted on the A Dataset for Emotion Analysis using Physiological Signals (DEAP) and the SJTU Emotion EEG Dataset (SEED). The classification results of accuracy, precision, and F-score for valence and arousal dimensions on DEAP achieved 90.67% and 90.33%, 92.38% and 91.72%, and 91.34% and 90.86%, respectively. The accuracy, precision, and F-score of positive, neutral, and negative classifications reached 94.92%, 95.34%, and 94.17%, respectively, on the SEED dataset. Significance. The above results demonstrate that the proposed ERGL method is encouraging in comparison to state-of-the-art recognition research.

Funder

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference45 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3