A deep neural network for estimating the bladder boundary using electrical impedance tomography

Author:

Konki S K,Khambampati A K,Sharma S K,Kim K YORCID

Abstract

Abstract Objective: Accurate bladder size estimation is an important clinical parameter that assists physicians, enabling them to provide better treatment for patients who are suffering from urinary incontinence. Electrical impedance tomography (EIT) is a non-invasive medical imaging method that estimates organ boundaries assuming that the electrical conductivity values of the background, bladder, and adjacent tissues inside the pelvic domain are known a priori. However, the performance of a traditional EIT inverse algorithm such as the modified Newton–Raphson (mNR) for shape estimation exhibits severe convergence problems as it heavily depends on the initial guess and often fails to estimate complex boundaries that require greater numbers of Fourier coefficients to approximate the boundary shape. Therefore, in this study a deep neural network (DNN) is introduced to estimate the urinary bladder boundary inside the pelvic domain. Approach: We designed a five-layer DNN which was trained with a dataset of 15 subjects that had different pelvic boundaries, bladder shapes, and conductivity. The boundary voltage measurements of the pelvic domain are defined as input and the corresponding Fourier coefficients that describe the bladder boundary as output data. To evaluate the DNN, we tested with three different sizes of urinary bladder. Main results: Numerical simulations and phantom experiments were performed to validate the performance of the proposed DNN model. The proposed DNN algorithm is compared with the radial basis function (RBF) and mNR method for bladder shape estimation. The results show that the DNN has a low root mean square error for estimated boundary coefficients and better estimation of bladder size when compared to the mNR and RBF. Significance: We apply the first DNN algorithm to estimate the complex boundaries such as the urinary bladder using EIT. Our work provides a novel efficient EIT inverse solver to estimate the bladder boundary and size accurately. The proposed DNN algorithm has advantages in that it is simple to implement, and has better accuracy and fast estimation.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3