A nonlinear mixed model approach to predict energy expenditure from heart rate

Author:

Kortelainen Lauri,Helske JouniORCID,Finni TaijaORCID,Mehtätalo LauriORCID,Tikkanen Olli,Kärkkäinen SalmeORCID

Abstract

Abstract Objective. Heart rate (HR) monitoring provides a convenient and inexpensive way to predict energy expenditure (EE) during physical activity. However, there is a lot of variation among individuals in the EE-HR relationship, which should be taken into account in predictions. The objective is to develop a model that allows the prediction of EE based on HR as accurately as possible and allows an improvement of the prediction using calibration measurements from the target individual. Approach. We propose a nonlinear (logistic) mixed model for EE and HR measurements and an approach to calibrate the model for a new person who does not belong to the dataset used to estimate the model. The calibration utilizes the estimated model parameters and calibration measurements of HR and EE from the person in question. We compare the results of the logistic mixed model with a simpler linear mixed model for which the calibration is easier to perform. Main results. We show that the calibration is beneficial already with only one pair of measurements on HR and EE. This is an important benefit over an individual-level model fitting, which requires a larger number of measurements. Moreover, we present an algorithm for calculating the confidence and prediction intervals of the calibrated predictions. The analysis was based on up to 11 pairs of EE and HR measurements from each of 54 individuals of a heterogeneous group of people, who performed a maximal treadmill test. Significance. The proposed method allows accurate energy expenditure predictions based on only a few calibration measurements from a new individual without access to the original dataset, thus making the approach viable for example on wearable computers.

Funder

Suomen Akatemia

Opetus- ja Kulttuuriministeriö

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3