Individually optimized estimation of energy expenditure in rescue workers using a tri-axial accelerometer and heart rate monitor

Author:

Ogata Hitomi,Negishi Yutaro,Koizumi Nao,Nagayama Hisashi,Kaneko Miki,Kiyono Ken,Omi Naomi

Abstract

Objectives: This study aimed to provide an improved energy expenditure estimation for heavy-load physical labor using accelerometer data and heart rate (HR) measured by wearables and to support food preparation and supply management for disaster relief and rescue operations as an expedition team.Methods: To achieve an individually optimized estimation for energy expenditure, a model equation parameter was determined based on the measurements of physical activity and HR during simulated rescue operations. The metabolic equivalent of task (MET), which was measured by using a tri-axial accelerometer and individual HR, was used, where two (minimum and maximum) or three (minimum, intermediate, and maximum) representative reference points were selected for each individual model fitting. In demonstrating the applicability of our approach in a realistic situation, accelerometer-based METs and HR of 30 males were measured using the tri-axial accelerometer and wearable HR during simulated rescue operations over 2 days.Results: Data sets of 27 rescue operations (age:34.2 ± 7.5 years; body mass index (BMI):22.9 ± 1.5 kg/m2) were used for the energy expenditure estimation after excluding three rescue workers due to their activity type and insufficient HR measurement. Using the combined approach with a tri-axial accelerometer and HR, the total energy expenditure increased by 143% for two points and 133% for three points, compared with the estimated total energy expenditure using only the accelerometer-based method.Conclusion: The use of wearables provided a reasonable estimation of energy expenditure for physical workers with heavy equipment. The application of our approach to disaster relief and rescue operations can provide important insights into nutrition and healthcare management.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3