Abstract
Abstract
Objective: Brain waves vary between people. This work aims to improve automatic sleep staging for longitudinal sleep monitoring via personalization of algorithms based on individual characteristics extracted from sleep data recorded during the first night. Approach: As data from a single night are very small, thereby making model training difficult, we propose a Kullback–Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and it of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model. Main results: Experimental results on the Sleep-EDF Expanded database consisting of 75 subjects show that sleep staging personalization with single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen’s kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%. Significance: We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to the baseline method without personalization and 2.2 percentage points compared to it with personalization but without regularization.
Subject
Physiology (medical),Biomedical Engineering,Physiology,Biophysics
Reference37 articles.
1. Tensorflow: Large-scale machine learning on heterogeneous distributed systems;Abadi,2016
2. Protecting privacy of users in brain-computer interface applications;Agarwal;IEEE Trans. Neural Syst. Rahabil. Eng.,2019
3. Multichannel sleep stage classification and transfer learning using convolutional neural networks;Andreotti,2018
4. App stores for the brain: Privacy & security in brain-computer interfaces;Bonaci;IEEE Technol. Soc. Mag.,2015
5. Recurrent batch normalization;Cooijmans,2016
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献