Forecasting SARS-CoV-2 spike protein evolution from small data by deep learning and regression

Author:

King Samuel,Chen Xinyi E.,Ng Sarah W. S.,Rostin Kimia,Hahn Samuel V.,Roberts Tylo,Schwab Janella C.,Sekhon Parneet,Kagieva Madina,Reilly Taylor,Qi Ruo Chen,Salman Paarsa,Hong Ryan J.,Ma Eric J.,Hallam Steven J.

Abstract

The emergence of SARS-CoV-2 variants during the COVID-19 pandemic caused frequent global outbreaks that confounded public health efforts across many jurisdictions, highlighting the need for better understanding and prediction of viral evolution. Predictive models have been shown to support disease prevention efforts, such as with the seasonal influenza vaccine, but they require abundant data. For emerging viruses of concern, such models should ideally function with relatively sparse data typically encountered at the early stages of a viral outbreak. Conventional discrete approaches have proven difficult to develop due to the spurious and reversible nature of amino acid mutations and the overwhelming number of possible protein sequences adding computational complexity. We hypothesized that these challenges could be addressed by encoding discrete protein sequences into continuous numbers, effectively reducing the data size while enhancing the resolution of evolutionarily relevant differences. To this end, we developed a viral protein evolution prediction model (VPRE), which reduces amino acid sequences into continuous numbers by using an artificial neural network called a variational autoencoder (VAE) and models their most statistically likely evolutionary trajectories over time using Gaussian process (GP) regression. To demonstrate VPRE, we used a small amount of early SARS-CoV-2 spike protein sequences. We show that the VAE can be trained on a synthetic dataset based on this data. To recapitulate evolution along a phylogenetic path, we used only 104 spike protein sequences and trained the GP regression with the numerical variables to project evolution up to 5 months into the future. Our predictions contained novel variants and the most frequent prediction mapped primarily to a sequence that differed by only a single amino acid from the most reported spike protein within the prediction timeframe. Novel variants in the spike receptor binding domain (RBD) were capable of binding human angiotensin-converting enzyme 2 (ACE2) in silico, with comparable or better binding than previously resolved RBD-ACE2 complexes. Together, these results indicate the utility and tractability of combining deep learning and regression to model viral protein evolution with relatively sparse datasets, toward developing more effective medical interventions.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3