A computationally efficient algorithm to obtain an accurate and interpretable model of the effect of circadian rhythm on resting heart rate

Author:

Morelli DavideORCID,Bartoloni Leonardo,Rossi AlessioORCID,Clifton David A

Abstract

Abstract Objective: Wrist-worn wearable devices equipped with heart rate (HR) sensors have become increasingly popular. The ability to correctly interpret the collected data is fundamental to analyse user’s well-being and perform early detection of abnormal physiological data. Circadian rhythm is a strong factor of variability in HR, yet few models attempt to accurately model its effect on HR. Approach: In this paper we present a mathematical derivation of the single-component cosinor model with multiple components that fits user data to a predetermined arbitrary function (the expected shape of the circadian effect on resting HR (RHR)), thus permitting us to predict the user’s circadian rhythm component (i.e. MESOR, Acrophase and Amplitude) with a high accuracy. Main results: We show that our model improves the accuracy of HR prediction compared to the single component cosinor model (10% lower RMSE), while retaining the readability of the fitted model of the single component cosinor. We also show that the model parameters can be used to detect sleep disruption in a qualitative experiment. The model is computationally cheap, depending linearly on the size of the data. The computation of the model does not need the full dataset, but only two surrogates, where the data is accumulated. This implies that the model can be implemented in a streaming approach, with important consequences for security and privacy of the data, that never leaves the user devices. Significance: The multiple component model provided in this paper can be used to approximate a user’s RHR with higher accuracy than single component model, providing traditional parameters easy to interpret (i.e. the same produced by the single component cosinor model). The model we developed goes beyond fitting circadian activity on RHR, and it can be used to fit arbitrary periodic real valued time series, vectorial data, or complex data.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3