Spin injection by spin–charge coupling in proximity induced magnetic graphene

Author:

Kaverzin Alexey AORCID,Ghiasi Talieh S,Dismukes Avalon H,Roy Xavier,van Wees Bart J

Abstract

Abstract Within the field of spintronics major efforts are directed towards developing applications for spin-based transport devices made fully out of two-dimensional materials. In this work we present an experimental realization of a spin-valve device where the generation of the spin signal is exclusively attributed to the spin-dependent conductivity of the magnetic graphene resulting from the proximity of an interlayer antiferromagnet, chromium sulfide bromide (CrSBr). We clearly demonstrate that the usage of the conventional air-sensitive 3D magnetic contacts can be fully avoided when graphene/CrSBr heterostructures are employed. Moreover, apart from providing exceptionally long spin relaxation length, the usage of graphene for both generation and transport of the spin allows to automatically avoid the conductivity mismatch between the source and the channel circuits that has to be considered when using conventional low-resistive contacts. Our results address a necessary step in the engineering of spintronic circuitry out of layered materials and precede further developments in the area of complex spin-logic devices. Moreover, we introduce a fabrication procedure where we designed and implemented a recipe for the preparation of electrodes via a damage-free technique that offers an immediate advantage in the fields of air-sensitive and delicate organic materials.

Funder

NanoNed

The European Union Horizon 2020

NWO

Zernike Institute for Advanced Materials

Basic Energy Sciences

The Spinoza Prize

NSF

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3